Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

FORSCHUNG/2653: Was wir von Mäusehirnen lernen können (idw)


Universität Basel - 19.04.2012

Was wir von Mäusehirnen lernen können



Unser Gehirn besitzt zwar neuronale Stammzellen, aber kaum Möglichkeiten Neuronen zu ersetzen, die durch Krankheit, Verletzung oder das Altern verloren gegangen sind. Im Gegensatz dazu verfügen Nager über die Fähigkeit, ein ganzes Leben lang Neuronen zu bilden und Teile des Gehirns zu regenerieren. Die Gruppe von Prof. Verdon Taylor von der Universität Basel hat nun herausgefunden, dass die neuronalen Stammzellen im Mäusehirn ruhen und reaktiviert werden können. Dabei spielt die Signalgebung über den Notch1-Rezeptor eine wichtige Rolle. Die Forschungsergebnisse sind im "Journal of Neuroscience" veröffentlicht und sollen Perspektiven für eine künftige regenerative Gehirntherapie eröffnen.

Seit langem wurde angenommen, dass für die verminderte Regeneration des Gehirns beim Menschen der Mangel an Stamm- und Vorläuferzellen verantwortlich ist. Heute weiss man, dass die Gehirne erwachsener Säugetiere - einschliesslich des Menschen - Stammzellen enthalten, die das Potential zur Bildung neuer Neuronen besitzen. Warum es dem menschlichen Gehirn dennoch nicht gelingt, neue Nervenzellen zu bilden, bleibt ein Rätsel. Die zentrale Frage ist gegenwärtig, wie Stammzellen des Gehirns während des gesamten Lebens erhalten bleiben und wie ihre Aktivitäts- und Ruhezustände reguliert werden.

Eine Hypothese besagt, dass im Erwachsenenalter neuronale Stammzellen irreversibel im Ruhezustand bleiben. Interessanterweise können ausgewachsene Nager ihre ruhenden Zellen jedoch reaktiveren, um neue Neuronen zu bilden. Ein grundlegendes Verständnis davon, wie Aktivität bei neuronalen Stammzellen geregelt ist und worin sich aktive und ruhende neuronale Stammzellen unterscheiden, könnte also erklären, warum sich das menschliche Gehirn nicht selbst reparieren kann.

Notch1 bestimmt neuronales Schicksal

In einem soeben veröffentlichten Artikel zeigt die Gruppe von Prof. Verdon Taylor vom Departement Biomedizin der Universität Basel, dass der Signalweg über den Notch1-Rezeptor eine wesentliche Rolle bei der Bildung von Neuronen im Gehirn von ausgewachsenen Mäusen spielt. Die Notch1-Signalgebung belässt die neuronalen Stammzellen in ihrem aktiven Zustand. Wird der Rezeptor gezielt ausgeschaltet, verbleiben die neuronalen Stammzellen in ihrem Ruhezustand. Offenbar sind bei aktiven und inaktiven neuronalen Stammzellen unterschiedliche Mechanismen schicksalsbestimmend.

Die Forschenden konnten zeigen, dass ruhende Stammzellen im Gehirn der Maus über ein Jahr bestehen bleiben und dass sie durch eine regenerations- und alterungsbedingte Notch1-Signalgebung wieder aktiviert werden können. Somit ist dieser Signalweg für neuronale Stammzellen sowohl für die laufende Neurogenese als auch für das regenerierende und alternde Mäusehirn entscheidend. Ob unser Gehirn diese Notch1-Signalgebung verloren hat, bleibt zu klären. Jedenfalls scheint der in der Maus beobachtet Mechanismus beim Menschen so nicht vorhanden zu sein. Zweifellos stellen der Mechanismus und die molekularen Unterschiede zwischen aktiven und ruhenden Stammzellen wichtige Ansatzpunkte für eine künftige regenerative Gehirntherapie dar.


Originalbeitrag
Onur Basak, Claudio Giachino, Emma Fiorini, H. Robson MacDonald, and Verdon Taylor
Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent but only in their active state
The Journal of Neuroscience, April 18, 2012, 32(16):5654-5666
doi: 10.1523/JNEUROSCI.0455-12.2012

Weitere Auskünfte
Prof. Dr. Verdon Taylor
Universität Basel
Departement Biomedizin, Embryologie und Stammzellbiologie
E-Mail: verdon.taylor@unibas.ch

Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/de/image168395
Notch1-abhängige neuronale Stammzellen bilden mehrere Untertypen von neuen Neuronen (grün) im erwachsenen Gehirn der Maus.

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution74

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Universität Basel, lic. phil. Christoph Dieffenbacher, 19.04.2012
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 21. April 2012