Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

FORSCHUNG/2846: Gliazellen helfen bei der Reparatur verletzter Nerven (idw)


Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. - 22.01.2013

Gliazellen helfen bei der Reparatur verletzter Nerven

Gliazellen bilden nach einer Nervenschädigung das Protein Neuregulin1 und fördern so die Regeneration von Nervengewebe



Das periphere Nervensystem besitzt im Gegensatz zum Gehirn und Rückenmark eine erstaunliche Regenerationsfähigkeit nach Verletzungen. Forscher am Max-Planck-Institut für experimentelle Medizin in Göttingen haben herausgefunden, dass periphere Gliazellen nach einer Nervenschädigung den Wachstumsfaktor Neuregulin1 produzieren, der einen wichtigen Beitrag zur Regeneration verletzter Nerven leistet.

Die Fortsätze von Nervenzellen im peripheren Nervensystem, die Axone, sind über ihre gesamte Länge, vom Zellkörper bis hin zum Muskel oder zur Haut, von Gliazellen umgeben. Diese sogenannten Schwannzellen umhüllen die Axone mit einer isolierenden Schicht, dem Myelin, das eine schnelle Weiterleitung elektrischer Impulse ermöglicht. Nach einer Schädigung eines peripheren Nervs werden die verletzten Axone zunächst abgebaut. Nach einigen Wochen wachsen sie aber erneut aus und werden anschließend von Schwannzellen wieder mit Myelin ummantelt. Aus bisher nicht verstandenen Gründen gelingt es den Schwannzellen jedoch nicht, die Myelinscheiden wieder vollständig zu regenerieren. Die Funktion der Nerven bleibt daher oft dauerhaft beeinträchtigt und betroffene Patienten leiden zum Beispiel unter Lähmungen bestimmter Muskeln.

In einer aktuellen Studie zeigen die Wissenschaftler, dass der Wachstumsfaktor Neuregulin1 die Nervenreparatur und den Wiederaufbau der Myelinschicht unterstützt. Normalerweise wird dieses Protein von Nervenzellen hergestellt und ist auf Axonen lokalisiert. Dort dient es als wichtiges Signal für die Reifung von Schwannzellen und die Myelinbildung. Da die Axone nach einer Verletzung aber schnell abgebaut werden, verlieren die verbleibenden Schwannzellen ihren Kontakt zu den Axonen. Ihnen fehlt damit das Neuregulin1-Signal der Nervenfaser. "In der Phase nach einer Nervenschädigung, in der die Axone fehlen, müssen die Schwannzellen viele Aufgaben ohne die Hilfe von axonalen Signalen ausführen. Wenn die Schwannzellen diese erste große Hürde nach einer Nervenverletzung nicht nehmen können, misslingt in der Folge die adäquate Reparatur des Nervs", erklärt Ruth Stassart, eine Autorin der Studie.

Um dies zu verhindern, übernehmen Schwannzellen selbst die Produktion des eigentlich neuronalen Signalmoleküls. Nach einer Nervenschädigung synthetisieren sie solange das Neuregulin1-Protein, bis die Axone wieder nachgewachsen sind. Mit Hilfe genetisch veränderter Mäuse konnten die Wissenschaftler in der Studie nachweisen, dass das in Schwannzellen produzierte Neuregulin1 für die erneute Reifung der Schwannzellen und die Regeneration der Myelinscheide nach einer Verletzung notwendig ist. "Mäuse, denen das Neuregulin1-Gen in Schwannzellen fehlt, zeigen eine weitreichende Beeinträchtigung der ohnehin schon unvollständigen Nervenregeneration", verdeutlicht Mitautor Robert Fledrich.

Die Forscher wollen jetzt genauer untersuchen, wie Schwannzellen nach einer Nervenschädigung zur vollständigen Reparatur myelinisierter Axonen beitragen, um dieses Wissen auch therapeutisch nutzbar zu machen.


Originalpublikation:
Ruth M Stassart, Robert Fledrich, Viktorija Velanac, Bastian G Brinkmann, Markus H Schwab, Dies Meijer, Michael W Sereda & Klaus-Armin Nave
A role for Schwann cell-derived neuregulin-1 in remyelination
Nature Neuroscience, 2013 Jan; 16(1):48-54.
doi: 10.1038/nn.3281.

Ansprechpartner:
Prof. Klaus-Armin Nave Ph.D.
Max-Planck-Institut für experimentelle Medizin, Göttingen
Telefon: +49 551 3899-757
E-Mail: nave@em.mpg.de

Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/de/image192640
Elektronenmikroskopische Aufnahme eines Nervenquerschnittes der Maus: Nach einer Verletzung zeigen zahlreiche regenerierte Nervenfasern eine zu dünne Myelinschicht.

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution207

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Dr. Harald Rösch, 22.01.2013
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 24. Januar 2013