Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

MELDUNG/130: Nachrichten aus Forschung und Lehre vom 31.05.10 (idw)


Informationsdienst Wissenschaft - idw - Pressemitteilungen


→  Erster spezifischer Bitterblocker identifiziert, der bitteren Beigeschmack von
      Süßstoffen mindert
→  Keine Entspannung für Krebszellen
→  Forscher entwickeln neue Methode zur Identifikation glykosylierter Proteine

Raute

Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke - 27.05.2010

Erster spezifischer Bitterblocker identifiziert, der bitteren Beigeschmack von Süßstoffen mindert

Potsdam-Rehbrücke - In Zusammenarbeit mit der Firma Givaudan Flavors Corporation und der University of New Mexico in Albuquerque hat ein Wissenschaftlerteam des Deutschen Instituts für Ernährungsforschung (DIfE) erstmalig einen spezifischen Bitterblocker identifiziert und charakterisiert, der unter anderem den bitteren Beigeschmack der Süßstoffe Saccharin und Acesulfam K mindert. Der Bitterblocker hemmt reversibel sechs von 18 untersuchten menschlichen Bittergeschmackssensoren und könnte künftig zur Geschmacksverbesserung von Getränken oder Medikamenten eingesetzt werden.

Das Wissenschaftlerteam um Jay P. Slack von Givaudan Flavors Corporation und Wolfgang Meyerhof vom DIfE publizierte seine Daten nun in der Fachzeitschrift
Current Biology (Slack et al. 2010, DOI: 10.1016/j.cub.2010.04.043).

Mit Hilfe eines besonderen Zellkulturverfahrens untersuchten die Forscher tausende Substanzen auf ihre Fähigkeit, menschliche Bittergeschmackssensoren zu blockieren - eine Vielzahl dieser Stoffe kam in die engere Wahl.

Eine der identifizierten Substanzen, von den Forschern kurz GIV3727* genannt, hemmte im Zellkulturtest sechs der 18 getesteten menschlichen Bitterrezeptoren. Zu diesen gehören auch die Sensoren hTAS2R31 und hTAS2R43. Beide Sensortypen sind eng miteinander verwandt und werden durch die Süßstoffe Saccharin und Acesulfam K aktiviert**.

Aber nicht nur im Zellkulturtest, sondern auch im Sensoriktest mit Probanden war GIV3727 wirksam und verminderte den bitteren Beigeschmack der beiden Süßstoffe, ohne deren Süßgeschmack zu verändern.

"Wir haben nicht nur den ersten spezifischen Bitterblocker identifiziert, sondern sind auch in der Erforschung der molekularen Mechanismen der Geschmackswahrnehmung wieder einen guten Schritt vorangekommen", sagt Wolfgang Meyerhof, Leiter der Abteilung Molekulare Genetik am DIfE.

Bitterblocker wie GIV3727 könnten dabei helfen, den Einfluss von Bitterstoffen auf den menschlichen Körper näher zu untersuchen. Einige Studien weisen darauf hin, dass Bitterrezeptoren auch außerhalb des Geschmackssystems eine Rolle spielen und im Atmungs- sowie Magen-Darmtrakt zu finden sind. Ob sie dort für die Wahrnehmung von Giftstoffen aus der Luft verantwortlich sind beziehungsweise in die Regulation des Zuckerstoffwechsels involviert sind, ist Gegenstand derzeitiger Untersuchungen.

"Nicht zuletzt könnten unsere Ergebnisse dazu genutzt werden, das Geschmacksprofil von Fertigprodukten, Getränken und Medikamenten zu verbessern. Letzteres könnte eine orale Einnahme von Schmerzmitteln oder Antibiotika bei Kleinkindern vereinfachen oder gar erst ermöglichen", erklärt Jay Slack, hauptverantwortlicher Wissenschaftler der Abteilung Molekulare Biotechnologie bei Givaudan Flavors Corporation.

Weitere Informationen finden Sie unter
www.dife.de
Informationen zum Deutschen Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE)

* GIV3727 = 4-(2,2,3-trimethylcyclopentyl)-Buttersäure

** Das Team um Wolfgang Meyerhof veröffentlichte bereits im Jahr 2004 in der Fachzeitschrift The Journal of Neuroscience, dass sowohl Saccharin als auch Acesulfam K die beiden Bittersensoren hTAS2R31 und hTAS2R43 aktivieren und für den unangenehmen bitteren Beigeschmack der Süßstoffe verantwortlich sind (Kuhn et al.; DOI: 10.1523/JNEUROSCI.1225-04.2004).


Hintergrundinformation:

Die Bittergeschmackswahrnehmung ist angeboren und bereits Babys können Bitterstoffe wahrnehmen. Gibt man einem Kleinkind etwas Bitteres, so versucht es, das Bittere so schnell wie möglich wieder auszuspucken. Dies macht die orale Gabe bitterer Medikamente in diesem Alter besonders problematisch. Obwohl nicht generell ein Zusammenhang zwischen Bitterkeit und Giftigkeit besteht, gehen Wissenschaftler im Allgemeinen davon aus, dass der Sinn für Bitteres uns vor dem Verzehr giftiger Nahrung bewahren soll.

Wolfgang Meyerhof leitet am DIfE eine der führenden Arbeitsgruppen, die sich mit Geschmacksforschung in Deutschland beschäftigen. Der Gruppe ist es gelungen, alle 25 menschlichen Bitterrezeptor-Gene zu identifizieren. Bitterrezeptoren findet man auf der Zunge, aber auch im Bereich des Gaumens, des Rachens und des Kehlkopfs. Bereits 2005 und 2006 hatten Ergebnisse der Arbeitsgruppe um Meyerhof gezeigt, dass die Wahrnehmung des Bittergeschmacks eine wichtige Rolle während der menschlichen Evolution spielte. Im Jahr 2007 zeigte die Gruppe um Meyerhof, dass Geschmackszellen über unterschiedliche Bitterrezeptoren-Sets verfügen. Damit wären zumindest auf molekularer und zellulärerer Ebene die Voraussetzungen erfüllt, zwischen verschiedenen Bitterstoffen zu differenzieren.

Das Deutsche Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE)
ist Mitglied der Leibniz-Gemeinschaft. Es erforscht die Ursachen ernährungsbedingter Erkrankungen, um neue Strategien für Prävention, Therapie und Ernährungsempfehlungen zu entwickeln. Forschungsschwerpunkte sind dabei Adipositas (Fettsucht), Diabetes und Krebs.

Zur Leibniz-Gemeinschaft
gehören zurzeit 86 Forschungsinstitute und Serviceeinrichtungen für die Forschung sowie drei assoziierte Mitglieder. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten strategisch und themenorientiert an Fragestellungen von gesamtgesellschaftlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen etwa 16.100 Mitarbeiterinnen und Mitarbeiter, davon sind ca. 7.100 Wissenschaftler, davon wiederum 2.800 Nachwuchswissenschaftler.
Näheres unter
www.leibniz-gemeinschaft.de

Givaudan
ist weltweit einer der größten Hersteller von Aromen und Duftstoffen. Das Unternehmen verfügt über Tochtergesellschaften und Filialen in mehr als 40 Ländern und beschäftigt rund 8.500 Mitarbeiter. Givaudan erwirtschaftete 2009 einen Umsatz von 3,959 Milliarden Schweizer Franken.

Kontakt:
Professor Dr. Wolfgang Meyerhof
Deutsches Institut für Ernährungsforschung
Potsdam-Rehbrücke (DIfE)
Abteilung Molekulare Genetik
Arthur-Scheunert-Allee 114-116, 14558 Nuthetal
E-Mail: meyerhof@dife.de

Jay Slack, PhD
Principal Investigator / Molecular Biotechnology
Research & Development, Givaudan Flavors Corp.
1199 Edison Drive - OH 45216 - Cincinnati - USA
http://www.givaudan.com
http://www.linkedin.com/in/jayslack

Dr. Gisela Olias
Leiterin der Presse- und Öffentlichkeitsarbeit
Deutsches Institut für Ernährungsforschung
Potsdam-Rehbrücke (DIfE)
Arthur-Scheunert-Allee 114-116, 14558 Nuthetal/Deutschland
E-Mail: olias@dife.de

Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/pages/de/image116676
Computermodell eines Bitterrezeptors. Der eingeblendete Kubus umfasst den Teil des Rezeptors, der in der Zellmembran eingebettet ist. Es wird deutlich, wie die sieben helikalen Abschnitte des Rezeptors das Protein in der Membran verankern, während die extrazellulären (nach oben) und intrazelluären Schleifen (nach unten) aus der Lipidschicht herausragen.

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution166

Quelle: Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke, Dr. Gisela Olias, 27.05.2010

Raute

Gemeinsame Pressemitteilung des Deutschen Krebsforschungszentrums und des Universitätsklinikums Heidelberg - 28.05.2010

Keine Entspannung für Krebszellen

Viele Tumorzellen wären aufgrund fehlerhaft verteilter Chromosomen nicht lebensfähig, hätten sie nicht einen besonderen Trick entwickelt. Unter Federführung des Deutschen Krebsforschungszentrums untersuchten Forscher, welche Erbanlagen dem Krebs diese Überlebensstrategie ermöglichen. Dazu schalteten sie systematisch jedes Gen der Krebszellen einzeln aus. Die Forscher zeigten nun, dass Krebszellen auf die Spannung bestimmter Proteinfasern angewiesen sind, um sich vermehren zu können. Proteine, die diese Spannung aufrecht erhalten, sind somit vielversprechende Angriffspunkte für neue, zielgerichtete Krebsmedikamente: Werden sie ausgeschaltet, sterben die Krebszellen ab.

Für den korrekten Ablauf einer Zellteilung sind die beiden Zentrosomen verantwortlich: An diesen Polkörperchen im Zellplasma setzen Zugfasern aus Proteinen an, die den frisch verdoppelten Chromosomensatz korrekt auf die beiden neu entstehenden Tochterzellen aufteilen. Unter dem Mikroskop betrachtet bilden diese Fasern dabei ein spindelförmiges Gebilde. Krebszellen haben jedoch häufig mehr als zwei Zentrosomen. Das hat zur Folge, dass ihre Zugfasern nicht notwendigerweise die normale - also spindelförmige - Gestalt mit zwei Enden ausbilden, sondern dass sich auch funktionsunfähige, mehrpolige Gebilde entwickeln. Diese missgebildeten Spindeln verteilen die Chromosomen völlig ungleichmäßig auf die Tochterzellen, die dann nicht mehr lebensfähig sind.

Tumorzellen überleben also nur dann, wenn ihnen trotz überzähliger Zentrosomen eine korrekte Verteilung der Chromosomen gelingt. Dazu haben viele Krebszellen einen Trick entwickelt: Sie bündeln mehrere Zentrosomen zu Aggregaten zusammen. Pro Zelle entstehen zwei Aggregate, zwischen denen sich eine funktionsfähige zweipolige Spindel ausbilden kann. Professor Dr. Alwin Krämer, Leiter einer Klinischen Kooperationseinheit des Deutschen Krebsforschungszentrums (DKFZ) und des Universitätsklinikums Heidelberg, erkannte diesen Trick als bislang kaum beachtete Achillesferse, um Krebszellen außer Gefecht zu setzen. Gemeinsam mit Kollegen aus dem DKFZ, dem Universitätsklinikum Heidelberg, der Medizinischen Fakultät Mannheim sowie der Mayo-Klinik in den USA untersuchte er systematisch, welche Gene die Krebszelle in die Lage versetzen, Zentrosomen-Aggregate zu bilden und damit dem Zelltod zu entgehen.

Dazu schalteten die Forscher mit Unterstützung der Abteilung von Professor Dr. Michael Boutros, DKFZ und Medizinische Fakultät Mannheim, jedes einzelne Gen der Krebszellen aus. Anschließend fahndeten sie unter dem Mikroskop, wo sich mehrpolige, missgebildete Spindeln zeigten. Insgesamt fanden sich 82 Gene, die bei der Bildung von Zentrosomen-Aggregaten eine Rolle spielen. 22 davon nahm das Team genauer unter die Lupe und untersuchte, welche Rolle sie bei der Aggregatbildung spielen. Dabei entdeckten die Wissenschaftler einen zentralen Mechanismus: Damit die Zentrosomen zu Aggregaten gebündelt werden können, müssen die Zugfasern unter Spannung stehen. Nur straff gespannte Zugfasern positionieren die Zentrosomen nahe genug beieinander, dass sich Aggregate bilden können. Für die Spannung sind einen ganze Reihe von Proteinen verantwortlich. Werden deren Gene ausgeschaltet, bilden sich mehrpolige Spindeln, und die Krebszellen sterben ab. Dieser Mechanismus lässt sich möglicherweise für die Entwicklung neuer Krebstherapeutika ausnutzen.

"Eine solche Therapie würde ganz gezielt den Krebs treffen, da nur Tumorzellen überzählige Zentrosomen haben und deshalb auf den Überlebenstrick der Aggregatbildung angewiesen sind", erklärt der Studienleiter Alwin Krämer. Im Rahmen der strategischen Allianz des Deutschen Krebsforschungszentrums mit der Firma Bayer-Schering wollen die Forscher um Krämer nun unter den identifizierten Genen nach geeigneten Angriffspunkten für eine zielgerichtete Krebstherapie suchen.

Weitere Informationen finden Sie unter
http://www.dkfz.de

Blanka Leber, Bettina Maier, Florian Fuchs, Jing Chi, Phillip Riffel, Simon Anderhub, Ludmila Wagner, Anthony D. Ho, Jeffrey L. Salisbury, Michael Boutros und Alwin Krämer:
Proteins Required for Centrosome Clustering in Cancer Cells.
Science Translational Medicine, 2010
DOI: 10.1126/scitranslmed.3000915

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution386

Quelle: Deutsches Krebsforschungszentrum, Dr. Stefanie Seltmann, 28.05.2010

Raute

Max-Planck-Institut für Biochemie - 27.05.2010

Forscher entwickeln neue Methode zur Identifikation glykosylierter Proteine

Viele Prozesse in unserem Körper werden durch nachträgliche Veränderungen von Proteinen gesteuert. Die Identifikation solcher Modifikationen ist daher essentiell für die weitere Erforschung unseres Organismus. Wissenschaftler des Max-Planck-Instituts für Biochemie in Martinsried haben jetzt einen weiteren entscheidenden Beitrag dazu geleistet: Mit einer neuen Methode haben sie über 6.000 glykosylierte Proteinstellen in verschiedenen Geweben identifiziert und somit eine wichtige Grundlage für das bessere Verständnis aller Lebensvorgänge geschaffen. (Cell, 28. Mai 2010).

Zahlreiche biologische Mechanismen wie die Immunabwehr, der programmierte Zelltod oder die Entstehung von Krankheiten beruhen darauf, dass einzelne Bausteine von Proteinen, die Aminosäuren, nachträglich verändert werden. Diesen Prozess nennen Wissenschaftler "posttranslationale Proteinmodifikation". Obwohl sich die Technologien im Bereich der Proteinforschung in den letzten Jahren rasant entwickelt haben, war es Forschern bisher nur eingeschränkt möglich, solche modifizierten Proteinstellen zu identifizieren. Vor allem die Veränderung von Proteinen durch Glykosylierung - die Bindung von Kohlenhydraten an einzelne Aminosäuren - war weitgehend unerforscht. Doch gerade sie ist einer der bedeutendsten Mechanismen zur Veränderung von Proteinen und spielt eine wichtige Rolle beim Aufbau komplexer Organe und Organismen. Unterlaufen bei der Proteinmodifikation Fehler oder findet sie unkontrolliert statt, hat das oft Krankheiten wie zum Beispiel Alzheimer oder die Prionkrankheit zur Folge.

Jetzt konnten Wissenschaftler der Abteilung "Proteomics und Signaltransduktion" des Max-Planck-Instituts für Biochemie, die von Matthias Mann geleitet wird, Licht ins Dunkel bringen: Sie haben eine auf Massenspektrometrie basierende Methode entwickelt, welche die Identifikation von N-glykosylierten Proteinstellen in verschiedenen Geweben ermöglicht. Die N-Glykosylierung ist eine spezifische Form der Glykosylierung, bei der die Kohlenhydrate an einen bestimmten Proteinbaustein, die Aminosäure Asparagin (abgekürzt mit "N"), binden.

Die neu entwickelte Methode beruht auf einem Filterverfahren, mit dem auch schwer zugängliche Proteine aus biologischem Material extrahiert werden können. Dieses Verfahren kombinierten die Forscher mit dem Einsatz hochauflösender Massenspektrometer, wodurch es ihnen gelang, 6.367 N-glykosylierte Proteinstellen zu identifizieren. Außerdem konnten sie bestimmte regelmäßig wiederkehrende Abschnitte (Sequenzmotive) herausarbeiten, die künftig als Erkennungsmuster für modifizierte Proteine dienen können.

Diese Erkenntnisse stellen wichtige Fortschritte für die Proteomik dar, so die Forscher, denn sie helfen dabei, die Vorgänge innerhalb des menschlichen Körpers besser zu verstehen. Zudem könnten sie auch für die Erforschung von Krankheiten eine zentrale Rolle spielen. So gelang es, einige veränderte Proteinstellen zu identifizieren, die mit verschiedenen Erkrankungen in Zusammenhang stehen: Zum Beispiel entdeckten die Forscher bisher unbekannte N-Glykosylierungsstellen an Proteinen, die eine wesentliche Rolle bei der Alzheimer-Krankheit spielen. Da die N-Glykosylierung an vielen Prozessen beteiligt ist, die bei Alzheimer gestört sind, vermuten die Wissenschaftler, dass diese Form der Proteinmodifikation die Erkrankung direkt verursacht oder zumindest entscheidenden Einfluss auf ihren Verlauf nimmt. Die Ergebnisse dieser Studie könnten somit für die weitere Erforschung der Krankheit von entscheidender Bedeutung sein und als Basis für mögliche Therapieansätze dienen, so die Hoffnung der Max-Planck-Forscher. [UD]

Weitere Informationen finden Sie unter
http://www.biochem.mpg.de/news/index.html
http://www.biochem.mpg.de/mann

Originalveröffentlichung:
D. Zielinska, F. Gnad, J. Wisniewski, M. Mann:
Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints.
Cell, 28. Mai 2010.

Kontakt:
Prof. Dr. Matthias Mann
Proteomics und Signaltransduktion
Max-Planck-Institut für Biochemie
Am Klopferspitz 18, 82152 Martinsried
E-Mail: mmann@biochem.mpg.de

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18, 82152 Martinsried
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de

Zu dieser Mitteilung finden Sie Bilder unter:
http://idw-online.de/pages/de/image116749
Vor der Messung im Massenspektrometer wird die Probe mit dem Elektrospray-Verfahren ionisiert.

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution25

Quelle: Max-Planck-Institut für Biochemie, Anja Konschak, 27.05.2010

Raute

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 1. Juni 2010