Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

MELDUNG/118: Hoffnung für die "Spin-Elektronik" (idw)


Westfaelische Wilhelms-Universität Münster - 18.02.2011

Hoffnung für die "Spin-Elektronik"

Aktuelle "Science"-Studie zeigt: DNA-Moleküle filtern Elektronen abhängig von ihrem Spin


Ein internationales Team von Wissenschaftlern hat erstmals gezeigt, dass Elektronen - abhängig von ihrem Spin - Schichten von DNA-Molekülen durchqueren können oder aufgehalten werden. Dadurch entstehen "spinpolarisierte" Elektronen mit überwiegend einheitlich orientiertem Spin, welchen man auch als "Eigendrehimpuls" bezeichnen kann. Diese Entdeckung, die in der aktuellen Ausgabe des renommierten Fachmagazins "Science" beschrieben ist, könnte zum Beispiel bei der Herstellung schnellerer und effizienterer Computer helfen. An der Studie beteilig sind die Arbeitsgruppen der Professoren Helmut Zacharias und Friedrich Hanne vom Physikalischen Institut der Westfälischen Wilhelms-Universität (WWU) und dem Center for Nanotechnology (CeNTech) in Münster, gemeinsam mit der Gruppe von Prof. Ron Naaman am Weizmann-Institut in Israel.

"Jedes Elektron dreht sich quasi fortwährend um sich selbst", veranschaulicht Helmut Zacharias den Begriff "Spin". Der Spin kann quantenmechanisch nur zwei Orientierungen zu einer vorgegebenen Achse einnehmen: rechts oder links herum. Wenn die Elektronenspins vorwiegend eine Orientierung zeigen, werden sie als spinpolarisiert bezeichnet. In einer binären Interpretation können die zwei Orientierungen des Elektronenspins als "1" oder "0" aufgefasst werden. Da auch Computer nach dem Binärsystem rechnen, leiten Wissenschaftler daraus große Hoffnungen ab, unter Ausnutzung des Spins von Elektronen logische Operationen durchführen zu können. Diese Hoffnung hat einen neuen Forschungszweig, die Spin-Elektronik oder Spintronik, hervorgebracht. Solche Elektronik wäre verlustärmer und würde weniger Wärme entwickeln als gegenwärtige Rechner. Sie böte die Möglichkeit einer weiteren Miniaturisierung und höherer Taktraten. "Bislang hat die Sache jedoch einen Haken: Es fehlt eine geeignete Quelle spinpolarisierter Elektronen, die sich bei Zimmertemperatur in elektronische Bauteile integrieren lässt. Daher verbinden wir mit unserer neuen Entdeckung so große Hoffnungen", betont Helmut Zacharias.

Das Experiment des Forscherteams beginnt mit Elektronen, die mithilfe von Laserstrahlung aus einer dünnen Goldschicht gelöst werden. Diese Elektronen zeigen zunächst keine Vorzugorientierung des Spins. Nachdem sie durch die etwa 20 Nanometer dicke selbstorganisierte Schicht aus doppelsträngiger DNA "geflogen" sind, ist die Spinorientierung der meisten Elektronen ihrer Flugrichtung entgegen gerichtet, sie sind also spinpolarisiert. "Die Elektronen zeigen nach dem Durchtritt durch die DNA-Schicht sogar dann mehrheitlich eine Spinorientierung antiparallel zur Flugrichtung, wenn sie zuvor überwiegend einen parallel zur Flugrichtung ausgerichteten Spin besaßen", erklärt Helmut Zacharias. "Die DNA-Schicht wirkt also als sehr effektiver 'Spinfilter'."

Die Beobachtung der Forscher könnte auch Auswirkungen auf Elektronentransferprozesse in der Natur haben. Die Erbsubstanz DNA liegt in der sogenannten Doppel-Helix-Struktur vor - das heißt, sie ist schraubenartig aufgebaut, ebenso wie weitere biologisch wichtige Moleküle. Man bezeichnet sie als chiral oder händig. "Möglicherweise lässt sich die Tatsache, dass nur rechtshändige DNA und Zucker sowie nur linkshändige Aminosäuren in der Natur vorkommen, auf den von uns beobachteten Effekt zurückführen", sagt Helmut Zacharias. "Ein früher oft herangezogener Grund für die Händigkeit der Natur ist die Hypothese, dass bei radioaktivem Beta-Zerfall Elektronen mit antiparallel zur Ausbreitungsrichtung polarisiertem Spin erzeugt werden. Gerade Elektronen mit dieser Spinorientierung werden bevorzugt durch die natürliche DNA hindurch gelassen. DNA mit anderem Drehsinn würde diese Elektronen absorbieren und könnte dabei auf Dauer zerstört werden. Ob der von uns entdeckte Effekt aber tatsächlich die Händigkeit in der Natur beeinflusst, können wir mit dem jetzigen Kenntnisstand noch nicht sagen."


Literatur: Göhler B. et al. (2011): Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA; Science Vol. 331 no. 6019 pp. 894-897; DOI: 10.1126/science.1199339

Weitere Informationen unter:
http://www.sciencemag.org/content/331/6019/894.full Literatur
http://www.uni-muenster.de/Physik.PI/Zach/ AG Prof. Zacharias, WWU

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/pages/de/institution72


*


Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Westfaelische Wilhelms-Universität Münster, Dr. Christina Heimken, 18.02.2011
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 22. Februar 2011