Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

MELDUNG/420: Hochqualitative Quantenpunkte mit leichten Löchern im Grundzustand realisiert! (idw)


Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden - 05.12.2013

Hochqualitative Quantenpunkte mit leichten Löchern im Grundzustand realisiert!



Wissenschaftlern am Institut für Integrative Nanowissenschaften des IFW Dresden und an der Johannes Kepler Universität (JKU) ist es nun in Kooperation mit Kollegen am Kavli Institut der TU Delft und am Max-Planck Institut für Festkörperforschung Stuttgart gelungen, hochqualitative Quantenpunkte mit einem leichten Loch im Grundzustand zu realisieren. Halbleiter-basierte Quantensysteme gelten als vielversprechende Bausteine für zukünftige Systeme für hochsichere Datenübertragung. In diesem Feld könnten leichte Löcher in Quantenpunkten als Zwischenspeicher für "Quantenbits" zum Einsatz kommen.

Ein Quantenpunkt ist eine Halbleiternanostruktur, die aus einigen zehntausenden Atomen besteht und die in der Lage ist, die Bewegung von Elektronen in allen Raumrichtungen einzuschränken. In dieser Hinsicht ähnelt ein Quantenpunkt einem Atom, in dem die Elektronen am Kern gebunden sind und sich daher nicht frei bewegen können.

Wie im Falle eines Atoms können Elektronen auch in einem Quantenpunkt von ihrem Grundzustand durch Zufuhr von Energie in einen angeregten Zustand gebracht werden. Die Rückkehr (Rekombination) des angeregten Elektrons in den Grundzustand kann in beiden Fällen von Lichtemission begleitet werden. Dieses Phänomen ist die Basis für die Funktionsweise der Lichtröhre (die atomare Gase benutzt) und von Leuchtdioden und Lasern (die aus Halbeleitermaterialien bestehen). Die Eigenschaften des emittierten Lichtes, wie z. B. Farbe und Polarisation, sind eng mit den Eigenschaften der angeregten Grundzustände verbunden. In einem undotierten Halbleiter befinden sich die Elektronen im Grundzustand in den sogenannten Valenzbändern. Nach der Anregung hinterlässt ein Elektron ein "Loch" in einem der Valenzbänder, das sich wie ein Teilchen verhält und abhängig vom Band eine schwere oder leichte "Masse" besitzt. Bei den Quantenpunkten, die bisher realisiert wurden, waren ausschließlich schwere Löcher im Grundzustand beteiligt.

In der Arbeit, die nun in der renommierten Zeitschrift "Nature Physics" erschienen ist, wurden Quantenpunkte in einer vorverspannten Halbleiterschicht, einer sogenannten Nanomembran, mittels Molekularstrahlepitaxie gewachsen. Nach Entfernen des Substrats dehnen sich diese Nanomembranen aus, und die elastische Zugverspannung ermöglicht den energetischen Austausch des schweren mit dem leichten Lochband. Die Emissionseigenschaften dieser Quantenpunkte unterscheiden sich stark von denen konventioneller Quantenpunkte, die entweder kompressiv verspannt oder unverspannt sind.

Die Arbeit eröffnet die Möglichkeit zur Erforschung von Halbleiter-basierten Quantensystemen (Leichtloch-Exzitonen und Leichtloch-Spins), die bis jetzt kaum untersucht wurden. Die leichten Löcher in Quantenpunkten könnten in Zukunft für die Speicherung von "Quantenbits" genutzt werden. Verglichen mit Elektronen versprechen Löcher längere Speicherzeiten. Darüber hinaus sollten sich leichte Löcher einfacher kontrollieren lassen als schwere Löcher, sodass die Schreib- und Lesezeit der gespeicherten Information verkürzt werden kann.

Die Ergebnisse sind in der Zeitschrift "Nature Physics" veröffentlicht: Y. H. Huo, B. J. Witek, S. Kumar, J. R. Cardenas, J. X. Zhang, N. Akopian, R. Singh, E. Zallo, R. Grifone, D. Kriegner, R. Trotta, F. Ding, J. Stangl, V. Zwiller, G. Bester, A. Rastelli and O. G. Schmidt: A light-hole exciton in a quantum dot, Nature Physics (2013), doi:10.1038/nphys2799.

Weitere Informationen unter:
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2799.html

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution391

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden,
Dr. Carola Langer, 05.12.2013
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 7. Dezember 2013