Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → PHYSIK


MELDUNG/715: Neue Entdeckung - Zirkular-polarisiertes Licht erzeugt orientierte Ströme in Nanokristallen (idw)


Universität Hamburg - 07.06.2017

Neue Entdeckung: Zirkular-polarisiertes Licht erzeugt orientierte Ströme in Nanokristallen


Nanokristalle, die nass-chemisch, also in einer Lösung hergestellt wurden, stecken heute schon unter anderem in den neusten TV-Bildschirmen. Eine Forschergruppe um PD Dr. Christian Klinke vom Institut für Physikalische Chemie der Universität Hamburg hat nun eine spezielle Eigenschaft in solchen Nanostrukturen nachgewiesen: In Bleisulfid-Nanoplättchen kann zirkular-polarisiertes Licht Elektronen ausrichten und einen orientierten Strom erzeugen. Damit sind in Zukunft günstigere und leistungsfähigere Transistoren und Computerchips bei gleichzeitig geringerem Stromverbrauch denkbar. Die Forschungsergebnisse wurden jetzt in der Fachzeitschrift "Nature Communications" veröffentlicht.

Nanomaterialien sind nur Millionstel eines Millimeters groß und haben besondere Eigenschaften. Die Gruppe um Christian Klinke ist spezialisiert auf die Herstellung und Charakterisierung zweidimensionaler Nanokristalle. Die plättchenförmigen Strukturen sind in ihren geometrischen, optischen und elektrischen Eigenschaften einstellbar. Das macht sie besonders interessant für eine Anwendung in Solarzellen oder Computerschaltkreisen.

Wenn Licht durch optische Filter geleitet wird, kann es zirkular polarisiert werden, d. h. die Lichtteilchen erhalten ein Drehmoment, den sogenannten Spin. Durch die Beleuchtung mit zirkular-polarisiertem Licht ist es möglich, elektrische Ladungen in Halbleitermaterialien auszurichten und in elektrischen Strom umzuwandeln, ohne dass eine Spannung angelegt wird. Diesen sogenannten Rashba-Effekt konnten die Forscherinnen und Forscher jetzt in zweidimensionalen Bleisulfid-Nanoplättchen nachweisen. Wegen der Kristallsymmetrie der Nanoplättchen ist dieser Effekt normalerweise dort nicht zu beobachten. Er trat erst durch den Einfluss eines äußeren elektrischen Feldes auf, das die Symmetrie bricht. Durch die Variation der Schichtdicke der Nanoplättchen, des Charakters des verwendeten Lichtes und der Intensität der elektrischen Felder ließ sich der Effekt kontrollieren und gezielt an die anvisierten Anwendungen anpassen. Die experimentellen Beobachtungen wurden durch die Gruppe von Prof. Dr. Carmen Herrmann vom Institut für Anorganische und Angewandte Chemie der Universität Hamburg mit Simulationen der elektronischen Struktur der Materialien unterstützt.

"Die Erkenntnisse sind besonders wertvoll, da zum ersten Mal nachgewiesen werden konnte, dass grundlegende Effekte des elektrischen Spin-Transports auch in nass-chemisch erzeugten Nanomaterialien möglich sind", so Christian Klinke. "Wir konnten außerdem zeigen, dass die zweidimensionalen Materialien im chemischen Labor preiswert und im großen Maßstab produziert werden können und trotzdem von höchster Qualität sind."


Link zum Artikel:
https://www.nature.com/articles/ncomms15721

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution109

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Universität Hamburg, Birgit Kruse, 07.06.2017
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 9. Juni 2017

Zur Tagesausgabe / Zum Seitenanfang