Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → TECHNIK

WERKSTOFFE/574: Materialforschung in neuer Dimension (MPG)


Max-Planck-Gesellschaft - 19. Mai 2011

FESTKÖRPERFORSCHUNG | MATERIALWISSENSCHAFTEN
Materialforschung in neuer Dimension

Die elektronischen und magnetischen Eigenschaften dünner Schichten hängen von der Zahl der übereinander gestapelten Atomlagen ab


Auf der Suche nach Materialien etwa für elektronische Bauteile können Physiker künftig einer neuen Spur folgen: Ein internationales Forscherteam unter der Leitung von Wissenschaftlern des Max-Planck-Instituts für Festkörperforschung in Stuttgart hat zum ersten Mal präzise beobachtet, wie sich die physikalischen Eigenschaften einer Substanz - genauer gesagt des Metalloxids Lanthannickeloxid - ändern, wenn es in zweidimensionaler statt dreidimensionaler Form verarbeitet wird. Tatsächlich zeigt eine Schicht von zwei Materiallagen beim Abkühlen auf sehr tiefe Temperaturen ganz andere elektronische und magnetische Effekte als eine Schicht von vier Lagen. Dass sich die physikalischen Charakteristika nun auch über die Dimension kontrollieren lassen, eröffnet neue Möglichkeiten Stoffe zu identifizieren, aus denen die Chips der Zukunft gemacht sein könnten.

Mit Infrarotlicht der Synchrotronquelle ANKA am Karlsruhe Institute of Technology bestimmen die Physiker um Bernhard Keimer die elektronischen Eigenschaften von Schichten aus zwei und vier Materiallagen. - © Abteilung Keimer/MPI für Festkörperforschung

Mit Licht die Leitfähigkeit messen: Mit Infrarotlicht der
Synchrotronquelle ANKA am Karlsruhe Institute of Technology bestimmen
die Physiker um Bernhard Keimer die elektronischen Eigenschaften von
Schichten aus zwei und vier Materiallagen. Die Probe ist als
weißgraues Quadrat erkennbar, das auf den goldfarbenen Zylinder
montiert ist. Der Laserstrahl fällt von rechts auf die Probe und wird
nach links auf den Detektor reflektiert
© Abteilung Keimer/MPI für Festkörperforschung

Die Halbleiterindustrie gerät allmählich an ihre Grenzen. Während sie elektronische Bauteile immer weiter verkleinert, dürften Leiterbahnen und Transistoren bald auf atomare Größe schrumpfen. Solch winzige Strukturen lassen sich mit den gängigen Methoden kaum noch kontrolliert herstellen. Wenn sie in Betrieb sind, erzeugen sie wegen ihres elektrischen Widerstands zudem so viel Hitze, dass sie rasch ihre Form verlieren dürften. Die Ära der Halbleiter-Elektronik könnte daher in absehbarer Zeit an ein Ende gelangen. Vielleicht bieten Metalloxide sich dann als Alternative an. Denn unter ihnen gibt es nicht nur Materialien, die sich wegen ihrer magnetischen Eigenschaften als Speichermaterialien empfehlen - zu den Metalloxiden gehören auch Supraleiter, die Strom völlig ohne Widerstand leiten.

Ein internationales Team um Alexander Boris und Bernhard Keimer am Max-Planck-Institut für Festkörperforschung in Stuttgart weist nun einen neuen Weg, um die Eigenschaften von Metalloxiden maßzuschneidern. Die Forscher, zu denen auch Wissenschaftler des Max-Planck-Instituts für Metallforschung, des Paul-Scherrer-Instituts im Schweizer Villigen und der Universität Fribourg ebenfalls in der Schweiz gehörten, haben nämlich erstmals genau herausgearbeitet, wie die räumliche Dimension eines Materials sein physikalisches Verhalten beeinflusst. "Wir drehen somit gezielt an einer Stellgröße, die Physiker bislang nur ungenau kontrollieren konnten", sagt Bernhard Keimer, Direktor am Max-Planck-Institut für Festkörperforschung. Ebensowenig gelang es ihnen aufzudröseln, welche Auswirkung die Dimension unter all den anderen Faktoren hat, die beim elektronischen und magnetischen Verhalten mitmischen. Und der Effekt ist immens, wie die Forscher nun feststellten.

Die Wissenschaftler untersuchten das Metalloxid Lanthannickeloxid LaNiO3, das neben den elektronisch inaktiven Lanthan- und Sauerstoffatomen auch Nickel enthält. Auf diese Zusammensetzung fiel die Wahl nicht zuletzt, weil Nickel eine spezielle Art von Elektronen mitbringt, die mit ihren magnetischen Momenten immer gut für physikalische Überraschungen sind. In einem massiven Stück ist davon allerdings nicht viel zu merken, und dazu gehören alle Proben, die dicker als vier Materiallagen sind, also auch nur wenige Nanometer messen: In dieser Form gehört Lanthannickeloxid zu den metallischen Leitern, und die magnetischen Momente der Elektronen wirbeln durcheinander wie umher purzelnde Stabmagneten. Das blieb auch so, als die Physiker eine Probe aus vier Lagen des Materials fast bis zum absoluten Nullpunkt der Temperatur bei minus 273 Grad Celsius abkühlten.


Originalveröffentlichung
Alexander V. Boris, Yulia Matiks, Eva Benckiser, Alex Frañó, Paul Popovich, Vladimir Hinkov, Peter Wochner, Miguel Castro-Colin, Eric Detemple, Vivek K. Malik, Christian Bernhard, Thomas Prokscha, Andreas Suter, Zaher Salman, Elvezio Morenzoni, Georg Cristiani, Hanns-Ulrich Habermeier und Bernhard Keimer
Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices
Science, 20. Mai 2011; doi: 10.1126/science.1202647

Ansprechpartner

Dr. Alexander Boris
Max-Planck-Institut für Festkörperforschung, Stuttgart
E-Mail: A.Boris@fkf.mpg.de

Prof. Dr. Bernhard Keimer
Max-Planck-Institut für Festkörperforschung, Stuttgart
E-Mail: B.Keimer@fkf.mpg.de


*


Quelle:
MPG - Presseinformation vom 19. Mai 2011
Herausgeber:
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Referat für Presse- und Öffentlichkeitsarbeit
Hofgartenstraße 8, 80539 München
Tel.: 089/21 08-0, Fax: 089/21 08-12 76
E-Mail: presse@gv.mpg.de
Internet: www.mpg.de


veröffentlicht im Schattenblick zum 21. Mai 2011